Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries
نویسندگان
چکیده
Solid-state lithium (Li) metal batteries are prominent among next-generation energy storage technologies due to their significantly high energy density and reduced safety risks. Previously, solid electrolytes have been intensively studied and several materials with high ionic conductivity have been identified. However, there are still at least three obstacles before making the Li metal foil-based solid-state systems viable, namely, high interfacial resistance at the Li/electrolyte interface, low areal capacity, and poor power output. The problems are addressed by incorporating a flowable interfacial layer and three-dimensional Li into the system. The flowable interfacial layer can accommodate the interfacial fluctuation and guarantee excellent adhesion at all time, whereas the three-dimensional Li significantly reduces the interfacial fluctuation from the whole electrode level (tens of micrometers) to local scale (submicrometer) and also decreases the effective current density for high-capacity and high-power operations. As a consequence, both symmetric and full-cell configurations can achieve greatly improved electrochemical performances in comparison to the conventional Li foil, which are among the best reported values in the literature. Noticeably, solid-state full cells paired with high-mass loading LiFePO4 exhibited, at 80°C, a satisfactory specific capacity even at a rate of 5 C (110 mA·hour g-1) and a capacity retention of 93.6% after 300 cycles at a current density of 3 mA cm-2 using a composite solid electrolyte middle layer. In addition, when a ceramic electrolyte middle layer was adopted, stable cycling with greatly improved capacity could even be realized at room temperature.
منابع مشابه
Stabilizing lithium metal using ionic liquids for long-lived batteries
Suppressing dendrite formation at lithium metal anodes during cycling is critical for the implementation of future lithium metal-based battery technology. Here we report that it can be achieved via the facile process of immersing the electrodes in ionic liquid electrolytes for a period of time before battery assembly. This creates a durable and lithium ion-permeable solid-electrolyte interphase...
متن کاملAdvanced Micro/Nanostructures for Lithium Metal Anodes
Owning to their very high theoretical capacity, lithium metal anodes are expected to fuel the extensive practical applications in portable electronics and electric vehicles. However, unstable solid electrolyte interphase and lithium dendrite growth during lithium plating/stripping induce poor safety, low Coulombic efficiency, and short span life of lithium metal batteries. Lately, varies of mic...
متن کاملBreaking Down the Crystallinity: The Path for Advanced Lithium Batteries
DOI: 10.1002/aenm.201501933 one of the most promising lithium-based batteries, the Li-S batteries are appealing as both the sulfur cathode and the lithiummetal anode offer an order of magnitude higher charge-storage capacity compared to the currently used insertion-compound electrodes. [ 16,17 ] In addition, sulfur is abundant and environmentally benign while lithium metal offers a desirable lo...
متن کامل3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries.
The microstructure and mechanical properties of the solid electrolyte interphase (SEI) in non-aqueous lithium ion batteries are key issues for understanding and optimizing the electrochemical performance of lithium batteries. In this report, the three-dimensional (3D) multi-layered structures and the mechanical properties of the SEI formed on a silicon anode material for next generation lithium...
متن کاملStrategies Based on Nitride Materials Chemistry to Stabilize Li Metal Anode
Lithium metal battery is a promising candidate for high-energy-density energy storage. Unfortunately, the strongly reducing nature of lithium metal has been an outstanding challenge causing poor stability and low coulombic efficiency in lithium batteries. For decades, there are significant research efforts to stabilize lithium metal anode. However, such efforts are greatly impeded by the lack o...
متن کامل